

swam with water jets. In 2014, an improved version of the
amphibious spherical robot was proposed using 3D printing
technology and adding sensors including gyroscopes,
accelerometer, global position system and cameras.12 Dif-
ferent from most existing mobile robots or autonomous
underwater vehicles, the robot was able to work in complex
and narrow environments like coral reefs and pipelines.13,14

Due to the unique mechanical structure and the specia-
lized application scenarios, designing a tracking system for
our amphibious spherical robot was a challenging task.
First, the load space of the robot was very narrow and was
designed as enclosed for waterproofing. Thus, a high-speed
computer or workstation, which is usually in large size and
generates a great deal of heat, was not suitable for this
small-scale mobile robot. Second, the robot was powered
by lithium batteries, the total capacity of which was 4800
mAh. So the power consumption of its robotic vision sys-
tem shall be considered to ensure enough work range.
Third, future applications ofthe robot include biological
monitoring and multi-robot collaboration. The robotic
vision system may need to track multiple targets or a
high-speed target like fish. Therefore, the real-time per-
formance of the tracking system shall be especially
considered. Besides, precision and effectiveness of the
adopted tracking algorithm should be acceptable to meet
the requirements of robotic applications like visual ser-
voing. To address issues mentioned above, a low-power
real-time tracking system build upon embedded proces-
sors was essential for applications of our amphibious
spherical robot.

In 2015, a prototype moving target detection system was
constructed for the robot using an SoC.12 The Gaussian
background model was used for foreground detection and
a customized accelerator was designed to ensure real-time
image processing. However, the framework of the proto-
type system was coarse and inefficient, which resulted in a
high CPU workload and a slow response speed of the
robotic control system. Besides, the adopted power optimi-
zation methods were not effective enough, which limited its
applications in practical scenarios.

Low-power real-time visual tracking systems
To overcome the high-computing load problem, the main-
stream solution of real-time visual tracking systems is
implementing algorithms with graphic processor units
(GPUs),15 digital signal processors (DSPs),16 FPGAs17 or
application-specific integrated circuits (ASICs).18 How-
ever, tracking systems built upon a single specific purpose
processor or PL device have drawbacks in real-time per-
formance, developing difficulties, cost and extendability,
respectively. That limited their applications in battery-
powered or multiple functional platforms like autonomous
mobile robots.

Hybrid or heterogeneous systems integrated advantages
of multiple solutions and have been widely used in real-

time vision applications in recent years. In general, CPU–
GPU is the most popular hybrid solution in the field of
computer vision for its excellent performance.19 However,
most CPU–GPU heterogeneous systems are fabricated as
computers or workstations, which have high power con-
sumption and are not suitable for small-scale mobile robots.
Moreover, programs of vision algorithm shall be carefully
optimized to use CPU and GPU simultaneously for a high
utilization rate. Besides, the program portability problem
between some types of NVIDIA GPUs still exists.

Another widely used hybrid solution for visual tracking
is DSP–FPGA which attaches customized hardware (i.e.,
FPGA) to an easy-to-develop processor (i.e., DSP). Tomasi
et al.20 designed a sparse optical flow-based smart video
sensor using FPGA and DSP co-processing architecture.
Harris corner detection algorithm was implemented on the
FPGA, and the DSP tracked the target using features
detected by the FPGA. An overall frame rate of 160 fps
for 640 � 480 resolution was finally achieved on this
hybrid system. Wang et al.21 designed a correlation track-
ing system using Texas Instruments TMS320DM642 DSP
and Xilinx Spartan-3E FPGA, and a frame rate of 25 Hz for
720� 576 resolution was achieved. For a better multitask-
ing capability and software portability, heterogeneous com-
puting systems centred on general-purpose (GP)
processors, such as ARMs, were also used in some stud-
ies.22 In an ARM–DSP hybrid system, a DSP usually
served as the specified image accelerator, which executed
time-consuming image processing operations and lightened
the burden of an ARM processor.23 But most hybrid sys-
tems mentioned above used an external interface to connect
the two devices. A low-efficient and low-reliable interface
turned into the performance bottleneck of these systems,
which may cause low utilization rate of the accelerator and
poor real-time performance.19 Besides, reliability, power
consumption and size of these systems should also be con-
sidered in some application scenarios.

A hybrid system containing two processors on a
single chip, commonly known as SoC, has recently
become a booming trend in embedded systems for image
processing.24 Because a SoC combines a GP processor with
a PL device together seamlessly, it provides flexibility and
extendibility beyond conventional solutions. Zhou et al.25

proposed a novel inertial-assisted visual odometry system
intended for low-cost micro-aerial vehicles. A low-cost
Altera SoC FPGA with a 600 MHz ARM Cortex processor
inside was adopted as the system core. A features from
accelerated segment test (FAST) feature detector and a
binary robust independent elementary features (BRIEF)
descriptor were realized on the FPGA to assist real-time
tracking. Gao et al.26 proposed a real-time embedded video
target tracking system for real-world airborne video with a
Texas Instruments, US, OMAP 3730 ‘ARMþ DSP’
embedded processor. The DSP core was utilized as a
motion estimation preprocessing unit, and the ARM core
worked for further processing. Compared with

Guo et al. 3

dual-processor hybrid systems, SoC-based systems have
advantages of compact size, low-power consumption and
extendability. However, numerous configurations on low-
level hardware shall be dealt to launch these systems nor-
mally. And most customized accelerators running on FPGA
shall be developed with hardware description languages
(HDLs), which are not suitable for developing complex
numerical functions. These characteristics resulted in great
difficulties to deploy subtle visual algorithms. Consequently,
most state-of-the-art tracking algorithms were not implemen-
ted onembeddedsystems orused in practical applicationsyet.

In 2010, Xilinx Inc. launched an all-programmable SoC
named Zynq-7000. Unlike most existing SoC FPGA con-
taining dedicated processor hardware cores, Zynq is formed
around an application grade processing system (PS), which
consists of an ARM Cortex-A9 dual-core processor and
essential hardware peripherals for running full operating
systems such as Linux. The PL, which is equivalent to a
Xilinx 7-series FPGA, served as a programmable periph-
eral of the PS. The PS is able to multitask complex works,
and the PL is suitable to implement digital interfaces or
parallel arithmetic units.

Moreover, high-speed Advanced eXtendable Interface
(AXI) buses provide low latency data exchange channels
between the two sections, which makes it efficient to trans-
fer partially processed data inside the heterogeneous sys-
tem. AXI ports connecting the PS and the PL, including
four GP ports, four high-performance (HP) ports and an
accelerator coherency port (ACP), provide a data transfer
rate of up to 8 GBps. According to different characteristics
of these AXI ports, they can be used to connect different
instantiating intellectual property (IP) cores for various
applications. As shown in Figure 2, the PS usually accesses
configuration registers of peripherals on the PL through

AXI-GP ports in low-speed applications such as motor
control. AXI-HP ports are suitable for high-speed applica-
tions in which an IP core needs to access the double data
rate (DDR) random access memory (RAM), for example,
video stream processing or image acquisition. Because the
AXI-ACP port is able to access the DDR and supports
coherency with the CPU cache, it can be used for applica-
tions needing a shared work spaces between the software
and the hardware, such as interactive image processing.

Zynq combines advantages of ARM and FPGA and
overcomes the communication problem between the two
sections. Thus, it provides a feasible solution for control
and processing systems of small-scale autonomous mobile
robots.28 However, as far as we know, few studies were
made to fully tap its potential in robotic vision. Focusing on
the application problem of the amphibious spherical robot,
a Zynq-7000 SoC was used to construct the robotic tracking
system in this article. A sophisticated heterogeneous com-
puting system architecture, which took full advantages of
its characteristics, was proposed to ensure the real-time
performance of the vision system. Moreover, optimization
methods including dynamic reconfiguration and word
length optimization were designed to further reduce the
power consumption and to enhance the system flexibility.

Analysis and evaluation on CT algorithm
In 2012, Zhang et al.6 proposed the CT algorithm, which
provided a concise and efficient solution for real-time
visual tracking applications. The primary innovation of the
CT algorithm was the compressive sensing-based random
feature extraction method. Benefiting from this fast and
effective way to compress raw pixel data, the CT algorithm
succeeded in excellent real-time performance.29 Mean-
while, the online learning Na�¨ve Bayes classifier used for
separating the target from background, which is a simple
but effective pattern recognition method, ensured the track-
ing robustness to disturbances like appearance changes,
camera vibration, and so on.30 Because the CT algorithm
found a balance point between the real-time performance
and effectiveness, it has a bright future in low-power real-
time computer vision applications.

However, as far as we know, most CT-based tracking
systems were running on personal computers (PCs) or
workstations.31 Because the computational consumption
of the CT algorithm is still too large for most embedded
platforms, there were no related application cases of
mobile robots.

For an accurate evaluation towards the computational
consumption of the CT algorithm, we rewrote the program
on eclipse with C language using no dependent libraries
like OpenCV. The algorithm program ran on a PC (Intel
Core i7-4712MQ, 8 GB DDR3 RAM, Windows 7 64-bit)
and a Zynq embedded system (ARM Cortex-A9 Dual-core
667 MHz, 512 MB DDR3 RAM, Linux 3.2.16), respec-
tively. The time consumption data of the CT algorithm at

Figure 2. Diagram of Zynq-7000 SoC-based use cases.27 Red
arrow lines indicate data-path of AXI-GP ports. Green arrow lines
indicate data-path of AXI-HP ports. Purple arrow lines indicate
data-path of the AXI-ACP port.

4 International Journal of Advanced Robotic Systems

different resolutions was as shown in Table 1. Because the
CT algorithm adopted the random Haar-like feature model
and the dimension of feature vectors to be processed by the
classifier was static, the real-time performance of CT has
little relationship with the image resolution. Without pro-
gram optimization, the processes of integral image calcula-
tion, compressive sensing and Na�¨ve Bayesian classifier
cost 20.4%, 11.9% and 64.7% of the whole time when
running on the computer, respectively. The corresponding
percentages when running on the ARM were 17.8%, 18.2%
and 60.0%, respectively. The process of compressive sen-
sing contains a great amount of floating-point multiplica-
tion and add operations. The Na�¨ve Bayesian classifier
mainly involves exponent and logarithm operations, which
are equivalent to floating-point multiplication operations
according to Taylor series. The pure software solution on
ARM could only provide a processing rate of 6.0 fps on
average, which could not meet the requirements of robotic
applications. Hence, hardware accelerating measures shall
be taken on these time-consuming processes to ensure real-
time performance.

Zynq-7000 SoC-based low-power
real-time tracking system

Heterogeneous architecture of the real-time
tracking system
The heterogeneous computing architecture of the low-
power real-time tracking system proposed in this article
was as shown in Figure 3. The major parts of software and
digital hardware of this system were integrated on a single
Xilinx Zynq-7000 SoC. The software concerning system
control and serial processes of algorithms was running on
the PS which provided an embedded Linux environment.
The hardware, including the image acquisition logic, the
customized image accelerator logic and other digital inter-
faces or logics, was deployed on the PL.

The image acquisition logic was composed of a camera
interface module controlling the camera, an AXI-DMA
module transferring acquired images to the DDR3 RAM

through an AXI-HP port and an image preprocess module
completing image enhancement operations. The customized
image accelerator logic was centred on a reconfigurable
image accelerator, which is an FPGA-based digital circuit
executing specific time-consuming operations of image pro-
cessing algorithms. The image accelerator can be repro-
grammed online by the PS through the processor
configuration access port (PCAP). Two AXI-DMA modules
were used to realize bidirectional data transfer between the
accelerator and the DDR3 RAM through the AXI-ACP port.

Data exchange between the IP cores was completed
through AXI4-Stream buses. The PS controlled the work
mode of these IP cores by accessing control register banks
via AXI-GP ports. The AXI ports used for DMA transfers
of the image acquisition and the image accelerator were
separated to avoid bandwidth competition. Considering
that the data exchange or interactive operations between
the software and the accelerator may be frequent, the
AXI-ACP port was assigned to connecting the customized
image accelerator logic.

In our system, an OV7670 COMS camera was adopted
and configured to capture 320� 240 16-bit RGB images at
30 fps. In the image preprocess module, acquired colour
images were converted into 320� 240 8-bit grey images
and were then transferred to the DDR3 RAM. The whole
working process of the system was divided into two stages:
the detection stage and the tracking stage. In the detection
stage, the Gaussian background model-based detection pro-
gram was running on the PS to sense moving object entering
the field of view. And the accelerator of Gaussian back-
ground model was programmed to the reconfigurable area
of the PL. The detector would mark the target to be tracked
once it found an eligible moving object. After that, the recon-
figuration operation would be executed to program the accel-
erator of the Na�¨ve Bayes classifier to the reconfigurable
area. Then, the CT program would be launched. In the track-
ing stage, the CT program was running on the PS to succes-
sively locate the target specified in the detection stage. The
partial bit stream files and Linux driver modules to be used in
the reconfiguration operation between two stages were
stored and managed in the file system of the PS.

Table 1. Computational consumption analysis of CT algorithm.

Algorithm module Numerical operations

Time consumption (ms)

On PC On ARM

320 � 240 640� 480 320� 240 640� 480

Sample candidate patches Add 0.028 0.031 0.29 0.30
Calculate integral image Add 1.19 9.44 11.23 52.89
Compressive sensing Multiplication and addition 2.42 2.76 29.46 30.84
Na�̈ve Bayesian classifier Exponent, logarithm and multiplication 13.11 14.92 99.43 99.20
Update classifier Multiplication and addition 0.58 0.68 6.32 6.53
Total – 17.33 27.83 146.73 189.76
Frame rate (fps) – 57.7 35.9 6.82 5.27

CT: compressive tracking; fps: frames per second; PC: personal computer; ARM: advanced RISC machine.

Guo et al. 5

in 1080p format. Genovese et al.18 implemented the
OpenCV version of the GMM on Xilinx Virtex-6 FPGA
and ASIC with VHDL, which was capable of processing 91
fps and 60 fps in 1080p, respectively. However, the studies
mentioned above mainly aimed at processing capability of
the circuits rather than the maintainability and user friend-
liness of the system.

To reduce development time and ensure hardware relia-
bility, accelerators used in the proposed system were imple-
mented with Vivado HLS tools. The processes in the
foreground detection stage mainly concerned pixel-based
processing, which is data independent and easy to be par-
allelized on the FPGA. Besides, Vivado HLS provides
some commonly used functions for image processing, such
as erode and dilate. These functions usually performed bet-
ter than self-designed IP cores because they have been
highly optimized by Xilinx Inc. in accordance with the
hardware platform. Thus, operations in the foreground
detection stage, the erode operation and the dilate operation
were realized in the accelerator of Gaussian background
model, and other operations in the target marking stage
were realized as programs running on the PS.

Figure 4 shows the major workflow of the detection
subsystem. After booting up, the detection program would
do initialization works including loading kernel modules,
resetting hardware, and so on.Later, preprocessed grey
images were buffered in the DDR3 RAM and then trans-
ferred to the Gaussian background model accelerator. The
computed binary image was returned to the program for
potential moving object detection. If an eligible moving
object was found, then it would be specified as the target
to be tracked. Finally, the FPGA area of the accelerator
was reconfigured and the tracking subsystem was
launched.

Figure 5 shows the primary structure of the accelerator
of Gaussian background model. The 320� 240 8-bit grey
images were serially read into the IP core from an AXI-
Stream port. Data of an image was buffered into a slice of
block RAM (BRAM) through an AXI-Stream first in first
out (FIFO). After receiving an image, the online Gaus-
sian background model computation process was started.
To reduce resource consumption and background noise,
the original image was resized to 160� 120 before
executing pixel-based foreground detection. The resize,
erode and dilate functions were realized on the basis of
the video function library provided by Vivado HLS.
Finally, the computed binary image was sent out to an
AXI-Stream port. The multipliers and adders inside the
detection loop were highly parallelized. 2.7 times speed-
up was achieved under this heterogeneous architecture, as
shown in Table 2.

Design of the CT-based tracking subsystem
The tracking subsystem was designed to successively
determine the bounding box of a target, the initial state of

which was specified by the detection subsystem. The CT
algorithm was adopted in this subsystem as mentioned in
the section ‘Heterogeneous architecture of the real-time
tracking system’.

According to the analysis results in the section ‘Analysis
and evaluation on compressive tracking algorithm’, accel-
eration mechanisms were designed for the processes of
compressive sensing and Na�¨ve Bayesian classifier to
achieve real-time performance. The process of compressive
sensing is actually a sparse matrix multiplication operation.
Thus, it can be speed up with the advanced single instruc-
tion, multiple data (SIMD) or ‘NEON’ engine, which is a
floating-point coprocessor extension to the PS. Because the
NEON engine supports 16-channel paralleled multiply–add
operations, the calculation process could be greatly accel-
erated and the CPU load could be decreased. The process of
Na�̈ve Bayesian classifier can be denoted as

Hpos;iðvÞ ¼
exp �

ðvi � � pos;iÞ
2

2s2
pos;i þ 10� 30

� �

� pos;i þ 10� 30 (2)

Figure 4. Flowchart of the Gaussian background model-based
detection subsystem. The block marked on yellow indicates the
reconfigurable area of the PL.

Guo et al. 7

Figure 10. Diagram of detection and tracking experimental results on the image sequences ‘Bike’.34 (a) Original image. (b) Detected
foreground image. (c) Dilate and erode result. (d) Detection result. (e) Tracking result. (f) Tracking result.

Figure 11. Diagram of detection and tracking experimental results on the image sequences ‘Walking’.33 (a) Original image. (b) Detected
foreground image. (c) Dilate and erode result. (d) Detection result. (e) Tracking result. (f) Tracking result.

Table 7. Success rate and centre location error of tracking experiments.

Sequence

Success rate (%) Centre location error (pixel)

On PC On Zynq (software) On Zynq (proposed) On PC On Zynq (software) On Zynq (proposed)

Bike 88.2 88.2 88.2 3.1 2.4 2.9
walking 100 100 100 5.8 5.6 7.8

PC: personal computer.

14 International Journal of Advanced Robotic Systems

tracker on PC, on ARM and on the heterogeneous system
are 49.3 fps, 6.48 fps and 61.4 fps, respectively. The kernel
load of the PC and the ARMwere 19.7% and 47.2% on
average, respectively. The proposed system was able to
achieve an average tracking frame rate of up to 89.2 fps
under the heterogeneous computing architecture, which
was 35.7% faster than a computer equipped with an Intel
quad-core processor and was 9.48 times faster than the pure
software solution built on the ARM processor. Moreover,
the kernel load of the ARM processor using the heteroge-
neous architecture was decreased to 32.8%, which provided
extended room for other robotic functions in the future.

(3) In the robotic test phase, the designed detection and
tracking system was installed on a prototype of our amphi-
bious spherical robot to monitor a moving car and an under-
water robot, respectively. As shown in Figure 12, the
single-board system was able to detect the moving target
and then tracked it successfully. In the underwater experi-
ment, the fluctuation of the water surface led to a few false
positive pixels. But false detections could be avoided by
specifying the region of interest.

The proposed system measures 118� 98 � 45 mm and
weighs 125 g. An Agilent 34410A multimeter controlled by
C# programs was used to evaluate its average power con-
sumption by continuously measuring the current and vol-
tage value. Test results show that the total power
consumption was around 2.99 W. Considering that the bat-
tery capacity of our spherical robot was 4800 mAh, it can
work in detection or tracking mode for no less than 8 h.

Conclusions
In this article, a low-power real-time detection and track-
ing system was designed and implemented for our amphi-
bious spherical robot. Given the unique mechanical
structure and the specializedapplication scenarios of the
robot, a novel SoC-based heterogeneous computing archi-
tecture was proposed for implementations of Gaussian

background model-based detection and CT algorithms.
Under the presented architecture, the main part of visual
algorithms was realized as software programs running on
the ARM subsystem, while compute-intensive processes
were realized as hardware accelerators running on the FPGA
subsystem. Moreover, dynamic reconfiguration and word
length optimization were adopted to improve the versatility,
adaptability and resource efficiency of the proposed system.
Experimental results confirmed that the proposed system
had advantages of lightweight, low power consumption and
good real-time performance, which was capable of meeting
application requirements of our amphibious spherical robot.
Its good real-time performance could also meet future
demands of the robot in biological monitoring and multi-
target tracking.

To the best of our knowledge, this is the first
embedded design to implement subtle tracking algorithms
on a single SoC for robotic applications. Moreover, the
proposed heterogeneous computing architecture provides
a feasible solution for mobile vision systems. The design
techniques presented in this article, including hardware–
software co-development, word length optimization and
reconfigurable customized accelerators, may promote the
practical use of state-of-the-art tracking algorithms like
TLD and MIL.

The system proposed in this article also had some inev-
itable drawbacks. The detection and tracking precision of
the proposed system was directly determined by the
adopted vision algorithms. Thus, the detection subsystem
could only process videos with static background. The
tracking subsystem had the drift problem which limited its
precision and would finally lead to tracking failures. Con-
sequently, the detection and tracking results in the experi-
ment section were not entirely accurate. Another problem
was that the study in this article mainly aimed at the design
and implementation of the robotic vision system. Robotic
application functions like visual servoing and autonomous
navigation was not realized yet. Our future study will try to

Table 8. Real-time performance test results of the proposed system.

Image sequence Resolution

Average tracking frame rate (fps)

On PC On Zynq (software) On Zynq (proposed)

Couple 320� 240 57.4 7.34 89.2
Dancer 320� 246 52.7 6.86 78.9
Dog 352� 240 58.2 7.50 79.4
FaceOcc1 352� 288 52.8 6.51 60.2
Crossing 360� 240 54.8 6.90 79.5
Doll 400 � 300 57.9 7.52 76.9
Bolt2 480� 270 57.3 7.26 72.7
Coke 640� 480 40.1 5.33 37.8
Bird2 720� 400 49.8 6.50 39.5
FleetFace 720� 480 31.0 5.04 33.0
Walking 768� 576 29.8 4.47 28.1
Average – 49.3 6.48 61.4

PC: personal computer; fps: frames per second.

Guo et al. 15

improve the tracking precision using state-of-the-art theo-
retical tools like the conventional neural network. We will
also focus on robotic applications and intelligent functions
of the amphibious spherical robot.

Author note
Author Shuxiang Guo is also affiliated to Faculty of Engineering,
Kagawa University, Kagawa, Japan.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect
to the research, authorship and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial sup-
port for the research, authorship and/or publication of this arti-
cle: This work was supported by National Natural Science
Foundation of China (61503028, 61375094), and Excellent
Young Scholars Research Fund of Beijing Institute of Technol-
ogy (2014YG1611). This research project was also partly

supported by National High Tech. Research and Development
Program of China (No.2015AA043202).

References

1. Kalal Z, Mikolajczyk K and Matas J. Tracking–learning–
detection.IEEE Trans Pattern Anal Mach Intell2012;
34(7): 1409–1422. DOI: 10.1109/TPAMI.2011.239.

2. Babenko B, Ming-Hsuan Y and Belongie S. Visual tracking
with online multiple instance learning. In:Proceedings of 2009
IEEE conference on computer vision and pattern recognition
(CVPR 2009), Miami, USA, 20–26 June 2009. New York:
IEEE, 2009, pp. 983–990. DOI: 10.1109/CVPR.2009.5206737

3. Hare S, Saffari A and Torr PHS. Struck: structured output
tracking with kernels. In:Proceedings of 2011 IEEE interna-
tional conference on computer vision (ICCV 2011), Barce-
lona, Spain, 6–13 December 2011. New York: IEEE, 2011,
pp. 263–270. DOI: 10.1109/ICCV.2011.6126251.

4. Bao C, Wu Y, Ling H, et al. Real time robust L1 tracker using
accelerated proximal gradient approach. In:Proceedings of
2012 IEEE conference on computer vision and pattern

Figure 12. Robotic test of the proposed detection and tracking system. (a) Picture of the proposed system. (b) Picture of the robotic
test.(c) Original image in the land scenario. (d) Detection result of the image sequence in the land scenario. (e) Tracking result of the
image sequence in the land scenario. (f) Tracking result of the image sequence in the land scenario. (g) Original image in the underwater
scenario. (h) Detection result of the image sequence in the underwater scenario. (i) Tracking result of the image sequence in the
underwater scenario. (j) Tracking result of the image sequence in the underwater scenario.

16 International Journal of Advanced Robotic Systems

recognition (CVPR 2012), Providence, USA, 18–21 June
2012. New York: IEEE, 2012, pp. 1830–1837. DOI: 10.
1109/CVPR.2012.6247881.

5. Li X, Hu W, Shen C, et al. A survey of appearance models in
visual object tracking.ACM Trans Intell Syst Technol2013;
4(4): 1–48. DOI: 10.1145/2508037.2508039

6. Zhang K, Zhang L and Yang M-H. Real-time compressive
tracking. In:Proceedings of the 12th European conference on
computer vision, Florence, Italy, 7–13 October 2012. Berlin,
Heidelberg: Springer, 2012, pp. 864–877. DOI: 10.1007/978-
3-642-33712-3_62.

7. Zhang T, Ghanem B, Liu S, et al. Robust visual tracking via
multi-task sparse learning. In:Proceedings of 2012 IEEE
conference on computer vision and pattern recognition
(CVPR 2012), Providence, Rhode Island, USA, 16–21 June
2012. New York: IEEE, 2012, pp. 2042–2049. DOI: 10.1109/
CVPR.2012.6247908.

8. Wang D and Lu H. Visual tracking via probability continuous
outlier model. In:Proceedings of 2014 IEEE conference on
computer vision and pattern recognition (CVPR 2014),
Columbus, Ohio, USA, 23–28 June 2014. New York: IEEE,
2014, pp. 3478–3485. DOI: 10.1109/CVPR.2014.445.

9. Guo S, Mao S, Shi L, et al. Development of an amphibious
mother spherical robot used as the carrier for underwater
microrobots. In:Proceedings of 2012 ICME international
conference on complex medical engineering (CME), Kobe,
Japan, 1–4 July 2012. New York: IEEE, 2012, pp. 758–762.
DOI: 10.1109/ICCME.2012.6275640.

10. Pan S, Shi L and Guo S. A Kinect-based real-time compressive
tracking prototype system for amphibious spherical robots.
Sensors2015; 15(4): 8232–8252. DOI: 10.3390/s150408232.

11. Li M, Guo S, Guo J, et al. Development of a biomimetic
underwater microrobot for a father–son robot system.
MicrosystTechnol2017; 23(4): 1–13. DOI: 10.1007/
s00542-016-2817-3.

12. Pan S, Shi L, Guo S, et al. A low-power SoC-based moving
target detection system for amphibious spherical robots. In:
Proceedings of 2015 international conference on mechatro-
nics and automation (ICMA), Beijing, China, 2–5 August
2015. New York: IEEE, 2015, pp. 1116–1121. DOI: 10.
1109/ICMA.2015.7237642.

13. Shi L, Guo S, Mao S, et al. Development of an amphibious
turtle-inspired spherical mother robot.JBionic Eng2013;
10(4): 446–455. DOI: 10.1016/S1672-6529(13)60248-6.

14. Guo J, Guo S and Li L. Design and characteristic evaluation
of a novel amphibious spherical robot.Microsyst Technol
2016; 2016: 1–14. DOI: 10.1007/s00542-016-2961-9.

15. Poff C, Nguyen H, Kang T, et al. Efficient tracking of ants in
long video with GPU and interaction. In:Proceedings of 2012
IEEE workshop on applications of computer vision (WACV),
Breckenridge, Colorado, USA, 9–10 January 2012. New York:
IEEE, 2012, pp. 57–62. DOI: 10.1109/WACV.2012.6163046.

16. Lee B-E, Nguyen T-B and Chung S-T. Improved real-time
implementation of adaptive Gaussian mixture model-based
object detection algorithm for fixed-point DSP processors.
J Meas Sci Instrum2010; 1(2): 116–120.

17. Cooke P, Fowers J, Hunt L, et al. A high-performance,
low-energy FPGA accelerator for correntropy-based feature
tracking. In: Proceedings of the ACM/SIGDA international
symposium on field programmable gate arrays, Monterey,
USA, 22–24 February 2013. New York: ACM, 2013, pp.
278–278. DOI: 10.1145/2435264.2435344

18. Genovese M and Napoli E. ASIC and FPGA implementation
of the Gaussian mixture model algorithm for real-time
segmentation of high definition video.IEEE TransVery
Large Scale Integr Syst2014; 22(3): 537–547. DOI: 10.
1109/TVLSI.2013.2249295.

19. Gurcan I and Temizel A. Heterogeneous CPU–GPU track-
ing–learning–detection (H-TLD) for real-time object track-
ing. J Real Time Image Process2015: 1–15. DOI: 10.1007/
s11554-015-0538-y. https://link.springer.com/article/10.
1007%2Fs11554-015-0538-y

20. Tomasi M, Pundlik S and Luo G. FPGA–DSP co-processing for
feature tracking in smart video sensors.J Real Time Image Pro-
cess2016; 11(4): 751–767. DOI: 10.1007/s11554-014-0413-2.

21. Wang Q, Gao Z and Li J. Real-time tracking objects in dif-
ferent scenes on DSP and FPGA platform. In:Proceedings of
MIPPR 2009: automatic target recognition and image anal-
ysis, Yichang, China, 30 October 2009. Bellingham, USA:
SPIE, 2009, pp. 1–8. DOI: 10.1117/12.832605.

22. Nikolic J, Rehder J, Burri M, et al. A synchronized visual-
inertial sensor system with FPGA pre-processing for accurate
real-time SLAM. In:Proceedings of 2014 IEEE international
conference on robotics and automation (ICRA), Hong Kong,
31 May–7 June 2014. New York: IEEE, 2014, pp. 431–437.
DOI: 10.1109/ICRA.2014.6906892.

23. Li G and Nie D. Hardware design of video tracking system
based on DSP and ARM.ChinModElectron Techn2008;
11(13): 104–109.

24. Guo S, Pan S, Shi L, et al. Visual detection and tracking system
for an amphibious spherical robot.Sensors2017; 17(4): 1–21.

25. Zhou G, Ye J, Ren W, et al. On-board inertial-assisted visual
odometer on an embedded system. In:Proceedings of 2014
IEEE international conference on robotics and automation
(ICRA), Hong Kong, 31 May–5 June 2014. New York: IEEE,
2014, pp. 2602–2608. DOI: 10.1109/ICRA.2014.6907232.

26. Gao X, Mao H, Munson E, et al. Efficient parallel implemen-
tation of real-time airborne target tracking system on hetero-
geneous multicore SoC. In:SPIE proceedings Vol. 8713:
airborne intelligence, surveillance, reconnaissance (ISR) sys-
tems and applications X, Baltimore, Maryland, USA, 29 April
2013. Bellingham, USA: SPIE, 2013, pp. 34–37. DOI: 10.
1117/12.2016024.

27. Crockett LH, Elliot RA, Enderwitz MA, et al.The Zynq book:
embedded processing with the ARM Cortex-A9 on the Xilinx
Zynq-7000 All Programmable SoC. Strathclyde, Scotland:
Strathclyde Academic Media, 2014, p. 484.

28. Konomura R and Hori K. Phenox: Zynq 7000 based
quadcopter robot. In:Proceedings of 2014 international con-
ference on ReConFigurable computing and FPGAs, Cancun,
Mexico, 8–10 December 2014. New York: IEEE, 2014, pp.
1–6. DOI: 10.1109/ReConFig.2014.7032546.

Guo et al. 17

https://link.springer.com/article/10.1007%2Fs11554-015-0538-y
https://link.springer.com/article/10.1007%2Fs11554-015-0538-y
https://link.springer.com/article/10.1007%2Fs11554-015-0538-y

http://cvlab.hanyang.ac.kr/tracker_benchmark/benchmark_v10.html
http://cvlab.hanyang.ac.kr/tracker_benchmark/benchmark_v10.html
http://www.laganiere.name/opencvCookbook/
http://www.laganiere.name/opencvCookbook/

Table 9. Principles of Gaussian background model-based detection.

Algorithm 2 Gaussian background model-based detection overview

procedure GaussianDetectionProcessFrame(n)
Step #1 Initialize the expected value and standard invariance of each pixel at the 1st frame

�row,col,1 �0, srow,col,1 s0

Step #2 Judge whether each pixel belongs to foreground and update background model
if pixelrow,col,n � �row,col,n<d�srow,col,nthen

�row,col,nþ 1¼(1-alpha)��row,col,nþ alpha�pixelrow,col,n

srow,col,nþ 1¼
ffi
ð1 � alphaÞ �s2

row;col;n þ alpha� ðpixelrow;col;n � � row;col;nÞ
2

q
foregroundrow,col,n¼false

else
�row,col,nþ 1¼pixelrow,col,n

srow,col,nþ 1¼s0

foregroundrow,col,n¼true
end if
Step #3 Execute erode and dilate on theforegroundbinary image
Step #4 Analyze connected region and list potential movingobjects
Step #5 Mark the object larger thanAreaThreshas the target to be tracked

end procedure

Guo et al. 19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

