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Abstract—In robot-assisted vascular interventional surg-
ery (VIS), surgeons often need to operate outside the oper-
ating room to avoid exposure to X-ray. However, it greatly
changes the operating ways of surgeons, which affects
judgment and operation safety. In this paper, a novel VIS
robot system was developed to predict guidewire insertion
states and operate collaboratively. To assist the surgeons
in perceiving the insertion state, an insertion multi-states
prediction model based on softmax logistic regression was
proposed. Combined with the prediction model, a human-
machine collaborative control strategy was designed, which
allows surgeons to perceive the insertion states based on
not only the force feedback constructed by the master side
but also the prediction results from the slave side. Moreover,
a human-machine trust evaluation model and a master-slave
collaborative mapping model were proposed for improving
safety and efficiency of surgery. To verify the effectiveness of
these models, the evaluation experiments in the blood vessel
model were carried out. It was indicated by the experiment
results that the guidewire insertion states can be predicted by
the predictionmodel in different environments,and the overall
accuracy is 93%. The master-slave mapping ratio can be adjusted by the collaborative control strategy automatically to
adapt to different surgical conditions. The experimental results showed the usability of the robot-assisted VIS system
with the novel force-based perception method.

Index Terms— Vascular interventional surgery, surgical state perception, human-machine trust, human-machine
collaborative control.
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I. INTRODUCTION

CARDIOVASCULAR disease greatly threatens human
health and is the biggest killer of humans [1]. Vascular

interventional surgery (VIS) has been one of the main methods
for the treatment of cardiovascular disease due to small trauma
and postoperative recovery [2], [3]. However, the surgery has
gradually exposed problems in safety and flexibility [4]–[7],
which include the ionizing radiation damage, orthopedic strain
injuries caused by surgeons wearing heavy lead-lined radio-
protective garments, and the high requirements for the surgical
experience. To solve the above problems, the robot-assisted
system for VIS has been studied by many companies and
research institutions for its advantages of master-slave remote
operation, high accuracy, and digitization [8]. The current
research mainly focuses on the mechanical structure design of
the master-slave VIS robot [8]–[12], the active bending control
of interventional medical devices [13], [14], and the collection
and application of intraoperative information [7], [15]–[27].
Although substantial achievements have been witnessed in
robot-assisted VIS during the past few decades, surgery force
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state perception and the human-machine collaborative control
remain difficult [28], [29]. Nevertheless, it is theoretically
significant and practically valuable to solve the above two
problems.

Surgeons mainly insert interventional medical devices by
observing the images of the DSA (digital subtraction angiog-
raphy) system during VIS. Experienced surgeons also perceive
the insertion force with their haptic sense for the judgment
of the insertion state and the decision making of surgical
operations [7]. Unlike surgery in the operating room, surgeons
rely on the interactive force with the master manipulator
to feel the insertion force of interventional medical devices.
Therefore, it is valuable to achieve the remote force state
perception. Many studies focus on the establishment of the
master manipulator interactive force and achieve remarkable
results [7], [15]–[20]. However, almost all master manipulator
control methods are different from the actual interventional
medical devices. Some master-slave systems use commercial
operators directly [11], [21]–[23], but the DOFs (degrees of
freedom) and shape of these operating handles are differ-
ent from the catheter and guidewire. Other parts consider
the surgeons’ habitual operating mode of manipulating a
catheter and design the catheter-based master manipulators
[7], [24]–[26], but the manipulation inertia is different
due to the fixed connection of various components of the
catheter. Therefore, the above two force feedback meth-
ods are limited in helping surgeons to judge the surgical
state.

The slave manipulator can measure surgical signals of
devices in real time and digitally without data transmitting
over systems. Therefore, it is a reasonable way to predict the
surgical state intelligently based on the force and position data
collected by the slave side during operating. In that case,
robots can do two tasks during surgeons using robots for VIS.
On the one hand, the master manipulator creates interactive
force with the surgeons based on the slave side data, which
can be reduced requirements in the natural sense to an extent.
On the other hand, the slave manipulator predicts the state
of interventional devices based on the surgical signals and
provides the results to the human-machine interface (HMI) in
real time to assist surgeons in decision making. To improve the
safety and efficiency of surgery, the human-machine collabora-
tive state can be evaluated based on the robot prediction results
and the surgeons’ decisions. The human-machine manipulation
parameters can be adjusted by the evaluated state to adapt to
different surgical conditions.

Machine learning is an important method for computers to
achieve human-like learning capabilities and has been used in
VIS robots. Guo et al. [22] modeled unstructured surgeons’
surgical skills based on convolutional neural networks (CNN)
and realized the navigation of guidewire in the simple blood
vessel model. They also evaluated surgical operation skills
based on machine learning for improving the surgical outcome
and robots performance [23]. Chi et al. [27] proposed a
method combining non-rigid registration and Gaussian mixture
model (GMM) and applied it to similar models for autonomous
robot intervention. However, the above image-based surgical
state prediction methods are limited in the small and complex

coronary arteries or renal arteries. Under these conditions, the
force-based methods often perform better in state prediction
and safety.

Some studies achieved safety protection in emergencies by
setting the insertion force threshold [16], [18]. However, on the
premise of ensuring the completion of insertion operations
and safe contact force with blood vessels, setting the force
threshold size in different environments is also a difficulty.
At present, there are few results on the prediction of multiple
insertion states of the guidewire based on the operation force
and position signals.

To this end, this paper sets out to propose a human-
machine collaborative control strategy for a VIS robot and
a guidewire insertion multi-states prediction model based
on softmax logistic regression. To collect the guidewire
insertion force and construct interaction force for surgeons,
a guidewire insertion force extraction model and a human-
machine interaction force construction system are designed.
Based on the prediction model, a human-machine trust
evaluation model and a master-slave collaborative mapping
model are proposed for improving the safety and efficiency
of surgery. A force and position collection platform was
built for collecting data sets of the left anterior descending
branch (LAD) and left circumflex branch (LCX) of the coro-
nary artery. Finally, a human-machine collaborative surgery
platform was built to test the accuracy of the force-based
prediction model and the feasibility of the collaborative control
strategy.

The remainder of this paper is organized as follows.
Section II introduces the proposed collaborative control strat-
egy, the VIS robot system, and the detail of the control
algorithms. In section III, evaluation experiments are presented
to verify the accuracy and performance of the robot system and
the proposed models. Section IV is the discussion. Finally, the
conclusion is given in Section V.

II. METHODOLOGY

A. Human-Machine Collaborative Control Strategy
Ionizing radiation harms surgeons during surgery, so the

VIS robot based on master-slave remote control strategy
has become a promising direction. The basic architecture
is composed of a master manipulator, a slave manipulator,
and remote communication equipment [30]. When surgeons
operate remotely, the real-time and effective feedback of data
determines the quality and safety of the operation. However,
the difference between the master manipulator and the inter-
ventional devices and the delay, which is caused by the wire-
less communication and the transmitting of each acquisition
system, greatly affect the surgeons’ judgment. Then it reduces
the safety of surgery with VIS robot.

To assist surgeons in predicting surgical state and decrease
the requirements of accuracy and real time ability in
force feedback, a human-machine collaborative control strat-
egy is proposed as shown in Fig. 1. Unlike the exist-
ing control strategies in other VIS robots [19], [20], the
strategy allows surgeons to perceive the operation state
based on not only the force feedback constructed by the
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Fig. 1. Human–machine collaborative control strategy.

master side but also the prediction results from the slave
side.

The surgeons judge the surgical state by observing the
operation information through the HMI and feeling the inter-
active force created by the master manipulator. The master
manipulator collects the surgeons’ operation data through the
torque sensor (JNNT-S-1Nm, BENGBU SENSOR, China),
clamping force sensor (FlexiForce 1lbsA201, TEKSCAN,
US), angular transducer-P (P2500, MIRAN, China), and
angular transducer-R (P2500, MIRAN, China). And it trans-
mits the data to the slave manipulator wirelessly in real
time, which is the input of the multi-closed-loop system on
the slave side. The slave manipulator clamps, rotates, and
inserts the guidewire under closed-loop control. The insertion
force sensor (SBT674-19.6N, SIMBATOUCH, China) and
the encoder (RW-ARE-485-RTU-11-5-m-6, REALWETECH,
China) of the slave side collect the current insertion force
and position data. Then based on the insertion state predic-
tion model, the slave side predicts the insertion states of
the guidewire intelligently in the blood vessel. Besides, the
prediction results and the insertion force data are fed back to
the HMI and interaction force construction system wirelessly
to assist the surgeons. So far, the master-slave system for
VIS completes a period operation. To show the effect of the
robot prediction on surgery, the human-machine collaborative
operation performance is evaluated by the human-machine
trust evaluation model based on the human-machine operation
results. And it can adapt to different surgical conditions by
adjusting the master-slave mapping ratio to improve the safety
and efficiency of surgeons using robots for VIS.

B. Human-Machine Interaction Force Construction
The slave manipulator is shown in Fig. 2(a). It is a recipro-

cating push/pull guidewire operation structure, which mainly
includes the insertion component, the clamping and rotating
component, the telescopic rod component, and a micro con-
troller unit (MCU). It can insert, clamp, rotate the guidewire,
and measure the insertion force and position. To improve

the measurement ability of weak insertion force, the force
measuring mechanism was designed based on the principle
of moment balance as shown in Fig. 2(b). It is a simple
lever to amplify the insertion force. The upper platform is
connected with the lower platform through a hinge, and the
latter is installed with a pressure sensor for measuring the
pressure perpendicular to its plane. The insertion force along
the axis of the clamping jaw is amplified by 3.5 times based
on the principle of moment balance and measured by the
pressure sensor. This structure enhances the ability to measure
weak force signals, and the overall accuracy reaches 5.6mN.
However, the force data includes the insertion force and the
inertial force of the mechanism. Furthermore, the former
is weaker than the latter, so an insertion force extraction
model was designed. The schematic diagram of the insertion
force measuring mechanism is shown in Fig. 2(c). From the
diagram, the insertion force in this state is expressed as the
follow equations:

f =
Fs � [

k�

i=1
(miri g + mi hi a1) + (m1hb + m2ha)a2]

hs
(1)

where f represents the guidewire insertion force, F represents
the force of the pressure sensor, s represents the horizontal
distance between the force measuring point and the hinge
axis, mi represents the mass of the i -th part, m1 represents
the mass of the screw nut, m2 represents the mass of the
connection plate, ri represents the horizontal distance between
the center of gravity of the i -th part and the axis of the hinge
axis, hi represents the vertical distance between the center of
gravity of the i -th part and the hinge axis, h1 represents the
vertical distance between the center of gravity of the screw
nut and the hinge axis, h2 represents the vertical distance
between the center of gravity of the connection plate and
the hinge axis, hs represents the vertical distance between
the guidewire axis and the hinge axis, a1 represents the
guidewire clamping and rotating component acceleration, a2
represents the acceleration of the screw nut and connection
plate, g represents the acceleration of gravity, k represents the
total number of parts.

The master manipulator is shown in Fig. 3. Same as the
slave side, it was designed with three DOFs: push/pull, rotat-
ing, and clamping. It is mainly composed of the interac-
tion force construction system, angular transducer-P, angular
transducer-R, several signal transmitters, and an MCU. The
master manipulator position signal of the push/pull motion
is collected by the angular transducer-P at one end of the
synchronous belt. And the other end of the synchronous belt
is driven by a servo motor (RE13, Maxon, Switzerland).
A torque sensor is installed between the servo motor and
synchronous belt to measure the human-machine interaction
force. On the one hand, the interactive force signal is filtered
to predict the surgeons’ operation intention and drive the servo
motor. It can reduce the resistance during operation. On the
other hand, a force closed-loop was formed to realize the
surgeons’ perception of the remote insertion force extracted
from the slave side. The position signal of the rotating motion
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Fig. 2. The slave manipulator. (a) Schematic structure. (b) Insertion force measuring mechanism. (c) The schematic diagram of the measuring
mechanism.

Fig. 3. The master manipulator.

is collected by the angular transducer-R coaxial link with the
handle.

C. Guidewire Insertion State Prediction Model
Human blood vessels are winding and complex, especially

in the coronary artery. The guidewire insertion force is related
to many factors during operation, which mainly includes
the shape of blood vessels, the depth of insertion, and the
number of bifurcations. The insertion resistance of guidewire
in blood vessels mainly includes blood viscous resistance,
the friction between the guidewire and the blood vessel wall,
and the resistance caused by the guidewire tip piercing the
blood vessel wall. The size of the insertion force increases
gradually with the depth of insertion, especially at the large
curvature of the blood vessels and the bifurcations. Therefore,
the effect of simply setting the threshold of the insertion force
to predict insertion state or ensure safe insertion is limited.
Yan et al. [22] proposed a 1D CNN-based method, which can
predict the unstructured surgical abnormal states. It performs
the feasibility of the force-based prediction method. However,
the model can only predict whether the current operating force
state is abnormal for safety. Nevertheless, more detailed states
of insertion are vital for surgeons without real perception.

Fig. 4. The guidewire insertion multi-states prediction model. Where
Ft represents the original data matrix of the guidewire insertion force,
xt represents the absolute depth data matrix of insertion, x(i) represents
the feature matrix of the i-th experimental sample, x the total feature
matrix of all experimental sample, wj

T represents the feature weight of
the label j, WT represents the total feature weight matrix, z(j) represents
the dot product of the feature matrix and the weight matrix of the label j, z
represents the dot product of the total feature matrix and the total weight
matrix, y(j) represents the predicted probability matrix of the label j, y
represents the probability prediction matrix of all categories, Softmax( • )
represents softmax logistic regression model.

Therefore, we proposed an insertion multi-states perception
model for solving the problem.

After planning the vascular intervention path, the distal end
of the guidewire was mainly divided into three states during
the insertion: passing the bifurcation, entering the bifurcation,
and obstructed. To predict the states, a guidewire insertion
multi-states prediction model based on machine learning was
proposed. The prediction function was completed in an MCU
with limited computing power to avoid communication delays-
between devices. Therefore, a low computational algorithm
that can achieve multi-classification, namely the softmax logi-
cal regression, was considered in this paper. It considered the
features of the insertion position and the trend of the insertion
force with the position. The state prediction model is shown
in Fig. 4.
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For the i -th training sample, the probability prediction
model belonging to the label j is expressed as the follow
equations:

P{y(i) = j |x(i); �} =
e� j

Tx(i)

3�

l=1
e�l

Tx(i)

(2)

where j � {0, 1, 2} represents passing by the bifurcation,
entering the bifurcation, and obstructed, respectively, � rep-
resents the weight matrix.

The cost function is shown as (3). The model was trained
using batch gradient descent. The regularizing term was added
to the cost function to reduce the overfitting caused by the
small sample size. The gradient expression is shown as (4):

J� = �
1

m

�

���
�

m�

i=1

3�

j=1

I {y(i)= j} ln
e� j

Tx(i)

3�

l=1
e�l

Tx(i)

�

���
	

+�
3�

i=1

n�

j=1

�i j
2

(3)

�� j J� = �
1

m



m�

i=1

x(i)(I {y(i) = j}� P{y(i) = j |x(i); �})

�

+�� j

(4)

where J� represents the cost function, � represents the reg-
ularization parameter, m represents the number of samples,
I {•} represents the indicator function.

D. Human-Machine Trust Evaluation Model
In the human-machine system, Moray et al. [31] proposed

that human trust in robots mainly depends on three factors:
robot performance, human performance, and environmental
factors. Among them, the human-machine trust is closely
related to robot performance and moderately related to human
performance and environmental factors. It is vital for the
working and efficiency of system. Zhao [32] proposed a
human-machine trust evaluation model. The model can set the
probability threshold based on the probability of the operat-
ing abnormal force and dynamically adjust the master-slave
mapping ratio to improve safety. However, on the one hand,
the trust evaluation model only evaluates the performance
of the robot. The operating information of surgeons, which
includes much implicit information, is also essential for the
trust evaluation. On the other hand, the operating force mode
recognizer can only predict whether the operation is abnormal
or not, without considering the human-machine operation
results under normal states.

To evaluate the operator and robot operation, we designed
the robot performance evaluation model and the operator’s.
Further, based on the performance evaluation models, a trust
evaluation model was designed to evaluate the agreement
degree of human-machine decision making and characterize
the current device insertion environment. As the application
of the trust evaluation model, the master-slave mapping ratio
is adjusted to adapt to the different operation states. It can
not only perform micro-operations to improve the safety and

Fig. 5. The human–machine decision making state analysis diagram.
(a) Three possible states in phase I. (b) Human-machine decision making
results. (c) Converted decision making results.

operation accuracy when the human-machine trust is low but
also insert the guidewire rapidly to improve the efficiency of
the operation when the trust is high.

1) Surgeons Operation Performance Evaluation Model: As
shown in Fig. 5(a), the planned route of the guidewire in
the phase I is passing by the bifurcation. The insertion has
three possible states: I0, I1, and I2, and they represent passing
by the bifurcation, entering the bifurcation, and obstructed,
respectively. As shown in Fig. 5(b), the human-machine
decision making results have 9 states. The blue arrows indicate
that the results are consistent, and the red arrows indicate that
the results are inconsistent. The surgeons’ judgments are often
implicit thinking. To collect and recognize it, the 9 states are
converted into 6 states as shown in Fig. 5(c). Where Ipush

represents pushing the guidewire, Ipull represents pulling the
guidewire. On the one hand, the surgeons’ operation speed
is positively correlated with the confidence of the operation,
that is, the higher the operation speed, the more certain the
operation. On the other hand, compared with the last collection
window, the change of the current speed also reflects the sur-
geons’ confidence in the current prediction. When the dynamic
speed increases, it means that the surgeons’ confidence in
the current state is increasing. On the contrary, when the
dynamic speed decreases, it means that the current surgeons’
confidence is less than the last collection time. Combined with
the dynamic speed, the trust evaluation model can avoid the
condition that the surgeons’ operating speed decreases sharply,
but the human-machine trust is still increasing. The sign of the
surgeons’ operating performance is determined by pushing or
pulling operation. So the surgeons’ operating performance can
be preliminarily expressed by:

PH(t) = sgn(�x(t)) • |� �x(t)| •
|� �x(t)|

|� �x(t � 1)| + |� �x(t)|
(5)

where PH(t) represents the surgeons’ operation performance,
PH(t) � [�1, 1], �x(t) represents the operating displacement

at time t , signum function sgn(�x(t)) =
�

1, �x(t) � 0
�1,�x(t) < 0

,

|� �x(t)| represents the operating speed at time t , |� �x(t � 1)|
represents the operating speed at time t � 1.

Normalize the expressions in (5) except for the signum
function, as shown in (6). Normalization can adjust the perfor-
mance of operator to the range of [0, 1) and ensure sensitivity

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 01,2022 at 13:53:16 UTC from IEEE Xplore.  Restrictions apply. 



YAN et al.: MACHINE LEARNING-BASED SURGICAL STATE PERCEPTION AND COLLABORATIVE CONTROL 7111

TABLE I
POSSIBLE CONDITIONS IN PHASE I

TABLE II
ROBOT PERFORMANCE IN VARIOUS OPERATING STATES

during low-speed operation.

PH(t)=sgn(�x(t))•
2

�
• atan(|� �x(t)|•

|��x(t)|
|� �x(t�1)|+|� �x(t)|

)

(6)

2) Robot Performance Evaluation Model: The performance
of the robot is mainly determined by the prediction results of
the robot, which is expressed as:

Pr(t) =


P0(t) P1(t) P2(t)
�

(7)

where Pr(t) represents the predicted probability matrix of
the guidewire insertion state at time t , Pj (t) represents the
predicted probability of the insertion state label j at time t .

As shown in Fig. 5(c) and TABLE I, there are 6 human-
machine decision making results from a to f in the phase I.
In the states of a and b, the predicted probability of label I0 is
the largest, and the label is the desired state. The state of a is
interpreted as the surgeons agreeing with the current prediction
results and continuing inserting. The state of b is interpreted
as the surgeons disagreeing with the results and withdrawing
the guidewire for the next attempt. Similarly, the states of
c and e are interpreted as the surgeons disagreeing with the
current prediction results and considering the current state as
the desired state. The states of d and f are interpreted as the
surgeons agreeing with the current prediction of the undesired
insertion state and withdrawing the guidewire. The robot
performance in various operating states can be summarized
as shown in TABLE II.

It can be concluded from TABLE II that when the robot
prediction result is consistent with the desired state, that
is, max(Pr(t)) = PE(t), the robot performance degree is
characterized as PE (t). When max(Pr(t)) �= PE(t), the robot

performance degree is characterized as 1 � PE(t). Further,
combined with the human-machine decision results, the rule
is expressed as:

PR(t) = sgn(PH(t)) • (PE(t) � I (max(Pr(t)) �= PE(t))) (8)

where PR(t) represents the robot performance, PR(t) �
[�1, 1],

I (max(Pr(t)) �= PE(t)) =

�
0, max(Pr(t)) = PE(t)
1, max(Pr(t)) �= PE(t)

.

3) Human-Machine Trust Model: At time t = 0, the human-
machine trust T (0) = 1, then T (t) is rewarded or punished
based on T (t �1). The human-machine trust evaluation model
is expressed as:

T (t) = T (t � 1) + |PH(t)| • PR(t) + E(t) (9)

where T (t) represents the human-machine trust at time t ,
T (t) � [0, 2], E(t) is set as a parameter related to the
number of undesired operations. The number of undesired
operations within a certain range of motion characterizes the
complexity of the current environment to an extent. E(t) is
simply expressed as:

E(t) = �0.5 ×
3�

p=1

Wdp (10)

where Wdp represents the number of withdrawing at phase p.

E. Master-Slave Collaborative Mapping Model
Predictably, the robot prediction has a certain error rate

due to the complex artery environment and incomplete data
set. Therefore, on the premise of not changing the results
of the surgeons’ decision making, the human-machine trust
model is only used to adjust the master-slave mapping ratio
dynamically.

The master-salve mapping ratio was set to three modes:
micro-operation, unit mapping operation, and efficient opera-
tion. The micro-operation mode, in which the human-machine
trust is in the range of 0 to 0.5, is switched to improve the
safety of the operation by decreasing the master-slave mapping
ratio. It shows that the current guidewire insertion environment
is complex and the human-machine collaboration degree is
low. The unit mapping operation mode, in which the trust is
in the range of 0.5 to 1.5, is the default operation mode. When
the trust is in the range of 1.5 to 2, the system switches to
the efficient operation mode. It is considered that the insertion
environment is simple and the collaboration degree is high.
This mode improves the operation efficiency by increasing the
master-slave mapping ratio.

To avoid the decrease of the robot system robustness due
to the frequent switching of the boundary between the three
modes, the hyperbolic tangent function was used to smooth
boundaries, and the master-slave mapping model is shown
in (11) and Fig. 6.

k(T (t)) =

�
0.25 tanh(T (t) � 0.5) + 0.75 T (t) � [0, 1]
0.25 tanh(T (t) � 1.5) + 1.25 T (t) � (1, 2]

(11)
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Fig. 6. Three operation modes and master-slave mapping curve.

Fig. 7. Data collection platform.

Fig. 8. Data collection platform.

F. Hardware Setup and Data Collection
To collect data for model training, a data collection platform

was built, as shown in Fig. 7. It mainly includes the master
manipulator, the slave manipulator, a blood vessel model, and
a data collection computer. The blood vessel model is an equal
inner diameter resin model resembling the LAD and LCX of
the coronary artery, as shown in Fig. 8.

A target point was marked at the blood vessel model
bifurcation. The guidewire needs to pass two bifurcations
during the insertion process. According to the bifurcation and
curvature at different positions, the blood vessel model was

divided into phase I, phase II, and phase III. Each phase
contains features that affect the insertion state.

In the phase I, when the rotating angle of the guidewire
with the head bend is right, the guidewire will pass by the
bifurcation smoothly as shown by the green guidewire I0 in
Fig. 8. In this state, the guidewire contacts with the inner
wall of the blood vessel smoothly, and the insertion force
hardly increases with the insertion depth; When the guidewire
enters the bifurcation as shown by the blue guidewire state I1.
The contact with the inner wall of the blood vessel is also
smooth, but the insertion force will increase slightly with the
insertion depth; When the guidewire is obstructed as shown in
the red guidewire state I2. The guidewire has a larger contact
force with the inner wall of the blood vessel model, and the
insertion force will increase greatly with depth. The phase III
is similar to the phase I, but the insertion force is different due
to the different absolute position and the bifurcation shape.
In the phase II, the blood vessel model has no bifurcation, but
the curvature of the model is notable and the insertion force
also increases to a certain extent.

As shown in Fig. 8, the starting point and the target point
were set on the blood vessel model, and data were collected
in the phases I, II, and III, respectively. The VIS robot was
controlled to insert within the range of the current phase
repeatedly with the rotated guidewire randomly. The labels,
insertion force, and position data were collected in real time,
and 1800 sets of data and labels were collected to form the
original data sets of the three phases.

Eight features were extracted to form the sample feature
matrix: standard deviation, maximum insertion force, insertion
force range, overall linear regression, average force and linear
regression in the bifurcation area, and average force and
linear regression in the posterior area. The label matrix was
composed of the training sample labels of each phase, which
were converted to one-hot encoding. The data set of each phase
was divided into 10 samples by stratified random sampling,
in which the test set was 30% and the training set was 70%.
Then the divided data set was standardized. The training data
set was formed with the feature matrix with the bias term and
the label matrix. The training model was optimized by the
batch gradient descent method. The learning rate was initially
set as 0.05. After training, the optimized model was obtained.

III. EVALUATION EXPERIMENTS AND RESULTS

A. Performance Evaluation of Master-Slave
Displacement Tracking

Master-slave displacement tracking performance is a vital
parameter for evaluating the VIS robot. In the experiment,
the operator’s operation displacement was measured by the
angular transducer-P of the master side, and the tracking dis-
placement of the slave manipulator was measured by an 11-bit
encoder. The wireless module (NRF24L01, HOLYIOT, China)
was used to realize the master-slave remote communication
and construct the master-slave remote displacement closed-
loop. The master-slave mapping ratio was set to 1, and the
operator pushed and pulled 8 times at different speeds, which
were marked as tests A to H. The measured master-slave
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Fig. 9. Experimental results for displacement tracking. (a) Displacement
tracking curve. (b) Tracking error boxplot.

displacement tracking curve and the error boxplot are shown
in Fig. 9.

The average dynamic tracking error was 2.228787 mm, and
the average relative dynamic tracking error was 2.74%, which
met the requirement for surgeons to operate guidewire accu-
racy. In tests B, D, F, and H, the tracking error was relatively
large due to the existence of the master-slave teleoperation
delay and the relatively high operating speed. In test H, the
average speed was 47.47 mm/s, the maximum instantaneous
speed was 126.07 mm/s, the maximum dynamic tracking error
was 14.08 mm, and the maximum relative dynamic tracking
error was 17.33%. From Fig. 9(b), the slower operation, the
lower the maximum tracking error, and the lower the median
error. In other words, lowering the operation or decreasing the
master-slave mapping rate is an effective method to improve
the operation accuracy.

B. Performance Evaluation of Master-Slave Insertion
Force Feedback

In this section, two experiments were performed to ver-
ify (1) and evaluate the performance of the master-slave
force feedback. The experimental setup is shown in Fig. 10.
It includes the insertion force measuring component of the
slave side and the interaction force construction system of the
master side.

The theoretical equivalent mass is 1.11 kg by substituting
the models’ parameters into (1). The mass can be verified by
measuring the pressure under the uniform acceleration motion
of the slave robot. In the inertial force verification experiment,
the acceleration was set to 18mm/s2, and the position and force

Fig. 10. Experimental setup for force feedback evaluation. (a) Guidewire
insertion force measuring component of slave side. (b) Interaction force
construction system of master side.

Fig. 11. Results of inertial force verification experiment.

data were measured by the encoder and the pressure sensor,
respectively, as shown in Fig. 2(a). The results of the inertial
force verification experiment are shown in Fig. 11, where the
blue line represents the insertion displacement, the red line
represents the measuring force, and the black line represents
the theoretical force under (1). The results suggested that the
theoretical mass conformed to the measurement results, so it
can replace the actual inertia. The green arrows, shown in
Fig. 11, are large fluctuations in the measuring force at the
beginning and end of acceleration. The reasons are the flexible
impact caused by the sudden uniform acceleration movement
and the rigid impact at the endpoint. In other cases, we dealt
with this problem.

In the performance evaluation experiment of force feedback,
the torque sensor of the master side and the pressure sensor
of the slave side were used to collect the human-machine
interaction force and the guidewire insertion force in real time,
respectively. The communication between the master and the
slave was realized by the wireless module, and a master-
slave operation force closed-loop system was constructed.
To make the operator feel the feedback force clearly, the
master-slave force mapping ratio was set to 6:1 initially. When
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Fig. 12. Experimental results of the master–slave insertion force
feedback.

the operator manipulated the master side, a guidewire insertion
resistance was applied at the slave side actively. As the input
of the interactive force construction system, the resistance was
extracted by the slave side and transmitted to the master side.
Then the input force was amplified 6 times by the master side
for the operator. The experimental results of the master-slave
insertion force feedback are shown in Fig. 12. The average
dynamic error was 0.338 N, and the average relative dynamic
error was 6.37%. At about 3 s, 10 s, 16 s, and 22 s, the dynamic
errors were 1.14421 N, 1.965 N, 1.79579 N, and 1.359 N,
respectively. The guidewire insertion resistance at the above
moments has large fluctuations. The reasons are the system
delay and the amplification of the mapping ratio. The force
error was also amplified 6 times. Besides, the force feedback
accuracy requirement can be reduced to an extent when the
guidewire insertion prediction model works.

C. Performance Evaluation of the Guidewire Insertion
Prediction Model

The experimental setup for the performance evaluation of
the prediction model is shown in Fig. 13, which mainly
includes the master manipulator, the slave manipulator, and the
blood vessel model. The model includes the LAD and LCX,
which was divided into three phases: I, II, III, similarly. The
target point was set at the end branch of the LCX. The operator
observed the current surgical information in the HMI and
manipulated the master side to insert the guidewire. During
the process, the slave side collected the force and position
signals in real time, and the insertion states were predicted by
the optimized prediction model.

In the evaluation experiment of the prediction model, the
operator repeatedly inserted the guidewire 100 times. The
angle of the guidewire was rotated randomly for each oper-
ation. The label with the largest probability among the three
labels was set as the final prediction result. The actual results
and the prediction results of the 100 operations are shown in
Fig. 14. Among 100 prediction results, 2, 3, and 2 prediction
errors existed in label 2, label 1, and label 0, respectively. The
prediction accuracy of the insertion state was 93%.

Fig. 13. Experimental setup for the performance evaluation of the
prediction model and the collaborative strategy.

Fig. 14. Results of the 100 operations.

D. Performance Evaluation of the Human-Machine
Collaborative Control Strategy

To evaluate the human-machine collaborative control strat-
egy, eight experiments were performed in the experimental
setup shown in Fig. 13. Each task was to insert the guidewire
into the bifurcation within 120 s, in which the target point was
set. Before the experiment, the operator tried ten exercises
for knowing the insertion task. To verify the feasibility of
the force-based perception method, the visual information
was canceled. Only the human-machine interaction force and
various kinds of information displayed on HMI were provided
to the operator in the experiment. To test the effectiveness in
different insertion states, different guidewire head shapes were
set up. The human-machine collaborative control algorithm is
shown in Alg. 1.

The results of the eight insertion experiments are shown
in TABLE III. 58 decisions were made by the robot in the
experiment. Among them, there were 54 consistent results
of human-machine decision making, which showed that the
operator had high trust in the prediction of the robot. Five of
the eight experiments were successful, and the success rate was
62.5%. However, 50 correct operations conformed to the task
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TABLE III
RESULTS OF THE EIGHT INSERTION EXPERIMENTS

Algorithm 1 State Prediction and Collaborative Control
Algorithm

Input: The optimized weight matrix W9×3;
Output: The prediction results Pr(t); The human-machine

trust T (t);
The master-slave collaborative mapping
ratio k(T (t));

1: For Timer on do
2: Input: the slave insertion position x(t), the slave

insertion force F(t);
3: If Reach the end of the phase Then
4: The feature matrix in time t: xt

1×8;
5: Feature standardization;
6: Add the bias term: xt

1×9;
7: Substitution optimized model:

Pr(t) = Softmax
�
xt

1×9 • W9×3
�
;

8: Transmitted to the HMI wirelessly;
9: Endif
10: Input the operation data: � �x(t), � �x(t � 1), T (t � 1);
11: The human operation performance: PH(t);
12: The robot performance: PR(t);
13: The human-machine trust:

T (t) = T (t � 1) + PH(t) • PR(t) + E(t);
14: The master-slave collaborative mapping

model: k(T (t));
15: The multi-closed-loop PID control;
16: Delay until the timer interrupt is triggered;
17: End for

during the operation, and the correct rate was 86.21%, which
met the expectation. The results showed the potentiality of
the force-based perception method. All five obstructed states
appeared in the phase III, and the model predicted success.
In addition, the robot mistakenly predicted one entering the
bifurcation state as obstructed state. TABLE III also showed
that the maximum insertion force at phases I, II, and III
gradually increased without obvious regularity.

Fig. 15 shows the position curve, the human-machine trust
curve, and the master-slave mapping ratio curve of the experi-
ment S1. The guidewire was inserted 10 times in three phases,
where No. 0 and No. 1 belonged to phase I, No. 2 belonged to
phase II, and No. 3 to No. 9 belonged to phase III. The robot

Fig. 15. Operation process of the experiment S1.

TABLE IV
PREDICTION RESULTS OF THE ROBOT

prediction results corresponding to each number are shown in
TABLE IV.

1) Phase I: At the No. 0 insertion, the robot predicted that
the guidewire entered the bifurcation closing to 100%. Based
on the result and the perception of the interaction force, the
operator considered that the guidewire entered the bifurcation
and decided to withdraw the guidewire. The judgments of
operator and robot were consistent. Combined the environ-
mental factors, the human-machine trust was increased to
1.436616, and the master-slave mapping ratio was adjusted
to 1.234175. At the No. 1, the robot reinserted the guidewire
and predicted that the guidewire entered the bifurcation with
a probability of 57.1418% and passed by the bifurcation
with 38.5051%. The final label is label 1, but the operator
considered that the guidewire passes by the bifurcation. The
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Fig. 16. Visualization of phase I prediction model.

judgments were inconsistent. To ensure safety, the trust was
punished to 0.831775, and the master-slave mapping ratio was
adjusted to 0.830029.

2) Phase II: At the No. 3, both the operator and the robot
considered that the guidewire passed phase II smoothly. The
trust was increased to 1.743663, and the master-slave mapping
ratio was adjusted to 1.309738. The VIS robot was switched
to the efÞcient operation mode.

3) Phase III: In this phase, entering the bifurcation was the
expected path. Due to the small inner diameter of the vascular
bifurcation, 7 insertions were performed. The situations of No.
3 to No. 7 were similar, in which the label 0 was close to
100%. Both the operator and the robot considered that the
guidewire passed by the bifurcation. Although the human and
robot judgments were consistent, the trust gradually decreased.
The repeated insertion of the No. 3 to No. 6 decreased the trust
from 1.743663 to 0 quickly. The master-slave mapping ratio
was also decreased from 1.309738 to 0.634471 and the VIS
robot was adjusted to the micro-operation mode. At the No.
3 insertion, the cumulative impact of environmental factors
was greater than the impact ofthe consistent human-machine
judgments, so the human-machine trust was decreased. In No.
8 insertion, the robot predicted that the guidewire entered the
bifurcation. The operator considered that the guidewire passed
by the bifurcation and withdrew. In No. 9 insertion, both the
operator and the robot considered that the guidewire entered
the bifurcation. The operator completed the insertion task,
which took 91.2 s.

Overall, these experiments showed that the guidewire inser-
tion state prediction model can predict the guidewire multi-
states continuously in different environments. It indicates
the feasibility and potentiality of the force-based perception
method. The trust evaluation model evaluated the human-
machine trust effectively based on the performance of the
robot and the operator. Moreover, it automatically adjusted
the master-slave mapping ratio to adapt to different surgical
conditions.

To show the impact of robot force sensing on the prediction,
the prediction model in phase I was visualized, as shown in
Fig. 16. The overall linear regression coefÞcient and the linear
regression coefÞcient in the bifurcation area were selected
as the key features through principal component analysis
(PCA). The two features were taken as the x-axis and y-axis
respectively, and three labels probability were taken as the

z-axis to draw a visualization of the prediction model. The rest
of features were taken as the feature average and eliminated
in the standardization. The results showed that the three labels
were divided into three parts, as shown in the blue (label 0),
green (label 1), and orange (label 2) grids inFig. 16. These
two key features focus on the variation of the insertion force
with the position. Similarly, instead of only the size of the
insertion force, surgeons focus on the change in guidewire
insertion force with insertion depth to perceive insertion states,
and this skill is implicit and empirical [20]. The proposed
machine learning-based method explicitly expresses this skill,
providing ideas for VIS robot force perception and force-based
safety strategies.

IV. DISCUSSION

The master-slave VIS robot system solves the problem of
surgeons exposed to X-ray radiation in the operating room.
Many researchers have paid attention to using the human-
machine interaction force of the master manipulator to repro-
duce the weak insertion force of the slave robot. However, the
difference between the master manipulator and the guidewire
or catheter in morphology and physical parameters limits the
contribution of force reproduction to the surgeonsÕ judgments
in surgery. Therefore, we used the slave robot, which collected
surgical data lower delay and more directly, to predict
the insertion state of the guidewire autonomously. Then the
prediction results were transmitted to the master side to
assist the surgeonsÕ judgments. Meanwhile, we combined the
robot prediction results with the operatorÕs decision making to
characterize the performance ofhuman-machine collaboration
and the complexity of the insertion environment, and adjust
the master-slave mapping ratio dynamically for safety and
efÞciency. Zhaoet al. [22] proposed a 1D CNN-based abnor-
mal state recognizer, which performs the feasibility of the
force-based prediction method. Compared with the recognizer,
the insertion state prediction model can predict not only the
abnormal insertion state but also whether the guidewire passed
by or entered the bifurcation in the blood vessel model under
the normal state. It better compensates for the inefÞcient acqui-
sition of remote surgical force. We think that the following
discussions are also necessary to enhance comprehension.

1) On the low success rate of collaboration control:
To verify the force-based perception method, we removed

the inßuence of vision information though it is vital for
operation. Moreover, the guidewire head shapes were set up
unintentionally, which may not be able to complete the task.
Therefore, a low success rate wasobtained in theexperiment.
However, on the premise that the operator had high trust in the
robot, the correct operation rate achieved 86.21%. The result
veriÞes the effectiveness of the state prediction model. On the
other hand, It is difÞcult for surgeons to complete the insertion
task without the surgical image information and adjusting the
guidewire head shape. In the future, the image data will be
processed to enhance state perception.

2) On the sensing rate:
The sensing rate is vital for the real-time performance of

the force-based perception method and also has an important
inßuence on the data set collection. The basis program frame
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was established on timer interrupt for ensuring the accurate
refresh cycle. The maximum stable measurement rate of the
master-slave system was 20 Hz considering the constraints
of the communication delay between the MCU, sensors, and
motor drivers.

3) On the difference of the maximum force of TABLE III:
TABLE III showed that the minimum value of the maxi-

mum force was 3.38 N and the maximum value was 3.91 N
in the phase III, which was a relatively large difference. The
reason is that the obstructed state caused a large contact
force between the guidewire and the blood vessel model.
Besides, the different shapes of guidewire head also influenced
contact force. Although the prediction model can predict the
obstructed state, the insertion process was not suspended in
time resulting in a relatively large contact force. Therefore,
a robot-assisted system, which is not based on force measure-
ment and has real-time force protection, may be designed in
the future.

V. CONCLUSION

In this article, a novel VIS robot system was developed
with the purposes of predicting guidewire insertion states and
collaborative operating. To this aim, the weak guidewire inser-
tion force was extracted and the human-machine interaction
force was constructed. Meanwhile, a guidewire insertion state
prediction model and a human-machine collaborative control
strategy were proposed. Finally, a human-machine trust eval-
uation model and a master-slave collaborative mapping model
were proposed, which can switch the master-slave operation
mode to adapt to different surgical conditions. The experiment
results demonstrated the feasibility and effectiveness of the
force-based perception model and the collaborative strategy
for enhancing the autonomy of the VIS robot.

Future studies will include the following: designing a robot-
assisted system that is not based on force measurement and
has real-time force insertion protection, enhancement of the
performance to perceive the insertion state by adding more
data about images.
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